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Exploratory Spatial Data Analysis of the distribution of 

regional per capita GDP in Europe, 1980-1995 
 
 
 
 

 
 
Abstract. The aim of this paper is to study the dynamics of European regional per capita product over time 
and space. This purpose is achieved by using the recently developed methods of Exploratory Spatial Data 
Analysis. Using a sample of European regions over the 1980-1995 period, we find strong evidence of global 
and local spatial autocorrelation in per capita GDP throughout the period. The detection of clusters of high and 
low per capita products during the period is an indication of the persistence of spatial disparities between 
European regions. This analysis is finally refined by the investigation of the spatial pattern of regional growth. 
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1 Introduction 

The integration of the European market has stimulated the analysis of regional economic convergence 

within the European Union in the recent macroeconomic literature (Neven and Gouyette 1995; Abraham and 

Von Rompuy 1995; Armstrong 1995; Molle and Broeckhout 1995). Most of the time, the empirical methods 

that have been used are identical to the methods used in international studies. However, at the regional scale, 

spatial effects and particularly spatial autocorrelation are determining for the analysis of convergence 

processes. Several factors, like trade between regions, technology and knowledge diffusion and more 

generally regional externalities and spillovers, lead to geographically dependent regions: there are spatial 

interactions between regions and the geographical location plays an important role. Despite their importance, 

the role of spatial effects in convergence processes has been only recently examined using spatial statistics and 

spatial econometric methods (López-Bazo et al. 1999; Fingleton 1999; Rey and Montouri 1999). 
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Therefore, this paper aims at studying the dynamics of European regional per capita product over time 

and space. In this purpose, we use the recently developed methods of Exploratory Spatial Data Analysis to 

examine the spatial distribution of regional per capita products. The detection of global and local spatial 

autocorrelation enables to characterize the way the economic activities are located in the European Union and 

the way this pattern of location has changed over the period.  

In the second section, we briefly present the principles and methods of Exploratory Spatial Data 

Analysis (ESDA). Using a sample of European regions over the 1980-1995 period, we compute in the third 

section a global spatial autocorrelation statistic, as well as local Moran autocorrelation statistics (Moran 

scatterplot and LISA; Anselin 1995, 1996) in order to detect clusters of high and low per capita products. 

Indeed, the existence of those clusters during the period would be an indication of the persistence of spatial 

disparities between European regions. The spatial pattern of regional growth is finally investigated. 

 

2 Exploratory Spatial Data Analysis 

Exploratory Spatial Data Analysis (ESDA) is a set of techniques aimed at describing and visualizing 

spatial distributions, at identifying atypical localizations or spatial outliers, at detecting patterns of spatial 

association, clusters or hot spots, and at suggesting spatial regimes or other forms of spatial heterogeneity 

(Haining 1990; Bailey and Gatrell 1995; Anselin 1998a, 1998b). These methods provide measures of global 

and local spatial autocorrelation.  

2. 1 Global spatial autocorrelation 

Spatial autocorrelation can be defined as the coincidence of value similarity with locational similarity 

(Anselin 2000). Therefore there is positive spatial autocorrelation when high or low values of a random 

variable tend to cluster in space and there is negative spatial autocorrelation when geographical areas tend to 

be surrounded by neighbors with very dissimilar values. 
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The measurement of global spatial autocorrelation is based on the Moran’s I statistic, which is the most 

widely known measure of spatial clustering (Cliff and Ord 1973, 1981; Upton and Fingleton 1985; Haining 

1990). For each year of the period 1980-1995, this statistic is written in the following way: 

( ) ( )
( )

, ,

2
0 ,

ij i t t j t t
i j

t

i t t
i

w x x
n

I
S x

µ µ

µ

− −
=

−

∑∑

∑
 1,...,16t =                       (1) 

where itx  is the observation in region i  and year t , tµ  is the mean of the observations across regions in year 

t . n  is the number of regions. ijw  is the element of the spatial weight matrix W . This matrix contains the 

information about the relative spatial dependence between the n  regions i . The elements iiw  on the diagonal 

are set to zero whereas the elements ijw  indicate the way region i  is spatially connected to the region j . 

Finally, 0S  is a scaling factor equal to the sum of all the elements of W .  

The spatial weight matrix we use in this study is based on the 10 nearest neighbors calculated from the 

great circle distance between region centroids. In Europe, regions have on average 5 to 6 contiguous 

neighbors, our choice of 10 yields a ring around each region of approximately the first and second order 

contiguous regions and moreover connects United-Kingdom as well as some islands such as Sicilia, Sardegna, 

and Baleares to continental Europe. Furthermore, it also connects Greece to Italy, so that the block-diagonal 

structure of the simple contiguity matrix is avoided. This feature is of particular interest when working on a 

sample of European regions, which are less compact than US states. 

Noting tz  the vector of the n  observations for year t  in deviation from the mean tµ , (1) can be 

written in the following matrix form: 
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In order to normalize the outside influence upon each region, the spatial weight matrix is row-

standardized such that the elements in each row sum to 1. In this case, the expression (2) simplifies since for 

row-standardized weights 0S n= . 
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Moran’s I statistic gives a formal indication on the degree of linear association between the vector tz  of 

observed values and the vector tWz  of spatially weighted averages of neighboring values, called the spatially 

lagged vector. Values of I larger than the expected value ( ) ( )1 1E I n= − −  indicate positive spatial 

autocorrelation, while values smaller than the expected indicate negative spatial autocorrelation. Inference is 

based on the permutation approach with 10000 permutations. In this approach, it is assumed that, under the 

null hypothesis, each observed value could have occurred at all locations with equal likelihood. But instead of 

using the theoretical mean and standard deviation (given by Cliff and Ord 1981), a reference distribution is 

empirically generated for I, from which the mean and standard deviation are computed. In practice this is 

carried out by permuting the observed values over all locations and by re-computing I for each new sample. 

The mean and standard deviation for I are then the computed moments for the reference distribution for all 

permutations (Anselin 1995). 

2.2 Local spatial autocorrelation 

Moran’s I statistic is a global statistic: it does not enable us to appreciate the regional structure of spatial 

autocorrelation. However, one can wonder which regions contribute more to the global spatial 

autocorrelation, if there are local spatial clusters of high or low values, and finally to what point the global 

evaluation of spatial autocorrelation masks atypical localizations or “pockets of local nonstationarity”, i.e. 

respectively regions or groups of contiguous regions, which deviate from the global pattern of positive spatial 

autocorrelation.  

The analysis of local spatial autocorrelation is carried out with two tools: first, the Moran scatterplot 

(Anselin 1996), which is used to visualize local spatial instability, and second, local indicators of spatial 

association “LISA” (Anselin 1995), which are used to test the hypothesis of random distribution by 

comparing the values of each specific localization with the values in the neighboring localizations. 

Moran Scatterplot 



 6 

Inspection of local spatial instability is carried out by the means of the Moran scatterplot (Anselin 

1996), which plots the spatial lag tWz  against the original values tz . The four different quadrants of the 

scatterplot correspond to the four types of local spatial association between a region and its neighbors: (HH) a 

region with a high1 value surrounded by regions with high values (Quadrant I in top on the right), (LH) a region 

a with low value surrounded by regions with high values (Quadrant II in top on the left), (LL) a region with a 

low value surrounded by regions with low values (Quadrant III in bottom on the left), (HL) a region with a 

high value surrounded by /regions with low values (Quadrant IV in bottom on the right). Quadrants I and III 

refer to positive spatial autocorrelation indicating spatial clustering of similar values whereas quadrants II and 

IV represent negative spatial autocorrelation indicating spatial clustering of dissimilar values. The Moran 

scatterplot may thus be used to visualize atypical localizations, i.e. regions in quadrant II or in the quadrant IV. 

Moreover, the use of standardized variables allows the Moran scatterplots to be comparable across time.  

The global spatial autocorrelation may also be visualized in this graph since, from (2) Moran’s I is 

formally equivalent to the slope coefficient of the linear regression of tWz on tz using a row-standardized 

weight matrix. Therefore, this regression can be assessed with diagnostics for model fit. The detection of 

outliers and sites, which exert strong influence on Moran’s I, is based on standard regression diagnostics: 

studentized residuals and leverage measures are used to detect outliers, and Cook’s distance is an influence 

measure (Belsley et al. 1980; Haining 1994, 1995). The studentized residual is a measure of the extreme 

character of an observation along the dependent variable domain and is calculated as the studentized 

difference between the actual value and the predicted value. The leverage quantifies the extreme nature of an 

observation in the range of the independent variable and is assessed using the diagonal elements of the hat 

matrix2 (Haoglin and Welsch 1978). Finally, the Cook’s distance combines the two previous diagnostics and 

measures the extent to which regression coefficients are changed by the deletion of a particular observation 

(Cook 1977; Weisberg 1985).  

                                                                 
1 High (respectively low) means above (respectively below) the mean. 
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Let us note however that the Moran scatterplot does not give any indications of significant spatial 

clustering and therefore, it cannot be considered as a Local Indicator of Spatial Association in the sense 

defined by Anselin (1995). 

Local indicators of spatial association (LISA) 

Anselin (1995) defines a local indicator of spatial association as any statistics satisfying two criteria3. 

First, the LISA for each observation gives an indication of significant spatial clustering of similar values around 

that observation; second, the sum of the LISA for all observations is proportional to a global indicator of 

spatial association. 

The local version of the Moran’s I statistic for each region i  and year t  can then be written as following: 
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where the summation over j  is such that only neighboring values of j  are included. It is straightforward to 

see that the sum of local Moran’s statistics can be written: 
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From (1), it follows that the global Moran’s I statistic is proportional to the sum of local Moran’s 

statistics: 

, 0t i t
i
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For a row-standardized weight matrix, 0S n=  so that ,

1
t i t

i

I I
n

= ∑ : the global Moran’s I equals the 

mean of the local Moran’s statistics. A positive value for ,i tI  indicates clustering of similar values (high or low) 

whereas a negative value indicates clustering of dissimilar values.  

                                                                                                                                                                                                                              
2 The hat matrix is defined as ')'( 1 XXXXH −=  where X is the matrix of observations on the explanatory variables 

in a regression. 
3 Note that the Getis and Ord (1992) local statistics ( )iG d  and ( )*

iG d  are not LISAs in the sense defined by Anselin (1995) 

since they are not related to a global statistic of spatial association and will not be used in this study. 
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Due to the presence of global spatial autocorrelation, inference must be based on the conditional 

permutation approach: the value ix  at site i is held fixed, while the remaining values are randomly permuted 

over all locations (note that only the quantity ( ),ij i t tj
w x µ−∑  needs to be computed for each permutation 

since the term ( ), 0i t tx mµ−  remains constant for a given region i ). It should be stressed that p-values 

obtained for the local Moran’s statistics are actually pseudo-significance levels. Inference is further 

complicated by the fact that local Moran’s statistics will be correlated when the neighborhood sets of two 

regions contain common elements (Ord and Getis 1995; Anselin 1995). This is actually a problem of multiple 

statistical comparison and the significance levels must be approximated by the Bonferroni inequality or by the 

procedure elaborated by Sidák (1967)4. As noted by Anselin (1995, p.96): “This means that when the 

overall significance associated with the multiple comparisons (correlated tests) is set to α , and there are m 

comparisons, then the individual significance iα  should be set to mα  (Bonferroni) or ( )1
1 1

mα− −  (Sidák)”. 

With m n= , the number of regions of the sample, these procedures can be overly conservative to assess the 

significance of local Moran’s statistics. The second procedure requires that the variables are multivariate 

normal, which is unlikely to be the case with LISA. In this respect, we will present the results obtained with 

both the usual 5% pseudo-significance level, which may be too liberal, and the 10% Bonferroni pseudo-

significance level (with 138n = , we get 47.246.10iα −= ), which may be too conservative in opposition to the 

preceeding one. These two significance level can therefore be considered as the two extreme bounds for the 

inference.  

Anselin (1995) gives two interpretations for local Moran’s statistics: they can be used, first, as 

indicators of local spatial clusters (or hot spots), which can be identified as locations or sets of neighboring 

locations for which the LISA are significant and second, as diagnostics for local instability, i.e. for significant 

outliers with respect to the measure of global spatial autocorrelation (atypical localizations or pockets of 

nonstationarity). The second interpretation of the LISA statistics is similar to the use of a Moran scatterplot to 

                                                                 
4 More about this problem can be found in Savin (1984). 
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identify outliers and leverage points for Moran’s I: since there is a link between the local indicators and the 

global statistic, LISA outliers will be associated to the regions which are the most influential on Moran’s I.  

 

 

 

3 Empirical results 

We apply ESDA techniques to European regional data on per capita GDP in logarithms. The data are 

extracted from the EUROSTAT-REGIO databank5. Our sample includes 138 regions for 11 countries 

(Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, 

Greece, Italy, Netherlands and Portugal in NUTS2 level6) over the 1980-1995 period7.  

3.1 Global spatial autocorrelation 

Table 1 displays the evolution of the spatial autocorrelation of per capita GDP over the 1980-1995 

period for the 138 European regions of our sample. It appears that per capita regional GDPs are positively 

spatially autocorrelated since the statistics are significant with 0.0001p =  for every year8. This result suggests 

that the hypothesis of spatial randomness is rejected and that the distribution of per capita regional GDP is by 

nature clustered over the whole period. In other words, the regions with relatively high per capita GDP 

(respectively low) are localized close to other regions with relatively high per capita GDP (respectively low) 

more often than if this localization was purely random.  

If we consider now the evolution of the Moran’s I statistics over the period, we can see that the value of 

the statistic has slightly increased over the period. If this scheme keeps on in the future, the spatial distribution 

of per capita GDP will remain clustered and will not tend toward a spatially random distribution. Moran’s I 

                                                                 
5 Series E2GDP measured in Ecu_hab units. 
6 We use Eurostat 1995 nomenclature of statistical territorial units, which is referred to as NUTS: NUTS1 means European 
Community Regions while NUTS2 means Basic Administrative Units. 
7 We exclude Groningen in the Netherlands from the sample due to some anomalies related to North Sea Oil revenues, which 
increase notably its per capita GDP. We exclude also Canary Islands and Ceuta y Mellila, which are geographically isolated. 
Corse, Austria, Finland, Ireland and Sweeden are excluded due to data non-availability over the 1980-1995 period in the 
EUROSTAT-REGIO databank. Berlin and East Germany are also excluded due to well-known historical and political reasons. 
8 All computations are carried out by the means of the SpaceStat 1.90 software (Anselin 1999). 
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statistics thus indicates a global significant trend to the geographical clustering of similar regions in terms of log 

per capita GDP.  

 

[Table 1 about here] 

3.2 Moran scatterplots 

 Since Moran’s I yields a single result for the entire data set, it cannot discriminate between a spatial 

clustering of high values and a spatial clustering of low values in the case of a global positive spatial 

autocorrelation. Furthermore, it may mask regions that deviate from this global pattern. These limitations are 

overcome by the Moran scatterplots.  

Figures 1 and 2 display the Moran scatterplots for the initial and final years of our sample: 1980 and 

1995. On the one hand, we can see that almost all of the European regions are characterized by positive 

spatial association (as indicated by the slope of the regression line). On the other hand, there are little 

“atypical” regions i.e. deviating from the global pattern of positive autocorrelation. More precisely, as can be 

seen in table 4, in 1980, 97.8% of the European regions show association of similar values (65.2% in 

quadrant I (HH) and 32.6% in quadrant III (LL)) and in 1995, 94.9% of the European regions show this 

positive association (56.5% in quadrant I (HH) and 38.4% in quadrant III (LL)). This may indicate the 

existence of two regimes of spatial autocorrelation, the first one corresponding to the HH scheme and the 

second one to the LL scheme, both of them representing positive spatial association. Not surprisingly, the 

Moran scatterplots reveal a clear north-south polarization of the regions: northern regions are to be found in 

the first quadrant (HH type) while southern regions are in the third quadrant (LL type). The major change 

between 1980 and 1995 concerns the British regions: they are in the third quadrant in 1995 (LL) whereas 

they were in the first quadrant in 1980 (HH). 

In 1980, only 3 regions show association of dissimilar values (2 in quadrant II (LH) and 1 in quadrant 

IV (HL)). We can note however that Aquitaine (France) is located at the border between the French regions, 

which are HH regions, and the Spanish regions, which are LL regions. This geographical situation explains 
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why Aquitaine is a HL region. The 2 LH regions are Wales and Northern Ireland (United-Kingdom). In 1995, 

there are 7 atypical regions (Hainaut and Namur (Belgium), Languedoc-Roussillon (France), East Anglia 

(United Kingdom)) in quadrant II (LH) and Aquitaine, Midi-Pyrénées (France) and Lazio (Italy) in quadrant 

IV (HL)).  

 

[Figures 1 and 2 about here] 

 

The Moran scatterplot can also be used to assess the presence of outliers, which are defined as the 

points further than 2 units away from the origin. In 1980, there are no regions that have a per capita GDP 

more than two standard deviations above the mean whereas Voreio Aigaio (Greece) and all Portuguese 

regions (except the capital region Lisboa) have per capita GDPs less than two standard deviations below the 

mean (horizontal axis in Figure 1). There is no outlier on the vertical axis (Figure 1). In 1995, Hamburg and 

Darmstadt (Germany) are outliers with per capita GDPs more than two standard deviations above the mean 

(Figure 2). The Portuguese regions cannot be considered as outliers anymore except Alentejo (Portugal) as 

well as Ipeiros and Voreio Aigaio (Greece). 

The first 2 columns and first 2 rows of Table 2 display a summary of the most extreme observations 

according to the Moran regression diagnostics for 1980 and 1995. First, the largest studentized residuals 

represent large deviations from the model fit. In the table are reported the 7 studentized residuals larger than 2 

in absolute value in 1980 and 1995. Second are reported the observations associated with leverages higher 

than 2p/n (where p is the number of explanatory variables in the regression, i.e. p= 2 and n = 138). There are 

12 such observations in 1980 and 1995, most of them being located in Portugal, Greece and Germany. 

Finally, a region is considered to be influential if the associated Cook’s distance is larger than 

);;5.0( pnpF − = 0.6967 with p = 2 and       n = 138. The results are not reported in the table since there 

was no occurrence of a region exceeding this level for all years (the highest value is 0.216 for Alentejo 
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(Portugal) in 1988). These results suggest that, although some regions have large leverages and studentized 

residuals, no region appears to be particularly influential in the sample.  

 

[Table 2 about here] 

 

More insight to the evolution of Moran’s scatterplots over time is provided by a newly introduced 

measure of space-time transitions, which is based on the classification of the transitions over time of a 

region and its neighbors in four groups (Rey, 1999). The first includes the transitions with a relative move of 

only the region, for example a HH region in the first period that becomes a LH region in the following 

period. The other cases are HL-LL, LH-HH and LL-HL. The second group contains the transitions of the 

neighbors only: HH-HL, HL-HH, LH-LL and LL-LH while the transitions of both a region and its 

neighbors belong to the third group: HH-LL, HL-LH, LH-HL and LL-HH. Finally, the 4 cases in which 

the region and its neighbors remain at the same level are in the fourth group. High stability in the types of 

transitions is reflected by a high amount of type 4 transitions and low values of the flux (or instability) 

measure, which is defined as the frequency of the first and second type of transitions over all 15 years of 

transitions. For time intervals of 1, 5 and 10 years, the fourth type of transition is always the most common 

one (95.6%, 89.9% and 85.3%) and the flux measure is respectively equal to 4%, 7.9% and 8.8%. These 

results denote a high cohesion between European regions and a very low rate of mobility, increasing very 

slowly with the transition interval. This finding is refined by the study of local spatial autocorrelation 

statistics. 

3.3 Local Spatial Autocorrelation Statistics 

In order to examine further these results that are consistent with EU economic reports, it is worth 

computing the local indicators of spatial dependence since no indication of significant local spatial clustering is 

provided by the Moran scatterplots. With the aim of identifying the spatial movements that occurred during the 
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whole 1980-1995 period, we will only retain the phenomena of local clusters and the atypical localizations for 

which the local Moran’s statistics are significant. The results of this procedure are summarized in Table 3.  

 

[Table 3 about here] 

 

The number of years over the whole period with significant local statistics (using a pseudo-level of 

significance of 5% and a Bonferroni pseudo-level of significance of 10%) is displayed in the second column9. 

The number of years during which the region falls into a certain quadrant of the Moran scatterplot with a 

significant local statistics are displayed in the following columns (HH, HL LH or LL). The corresponding years 

are finally displayed in the two last columns. Several points can be highlighted. 

First, the local pattern of spatial association reflects the global trend to positive spatial autocorrelation 

since 98.83% of the significant local indicators, using the 5% pseudo-significance level, fall either into quadrant 

I or in quadrant III of the scatterplot, i.e. representing HH and LL types of clustering. We note however that 

the distribution between associations of the HH and LL types is uneven since 62.23% of the regions fall into 

quadrant I: we thus mainly detect regions or sets of regions with high per capita GDP surrounded by other 

regions with high per capita GDP10. 

Second, deviations of the global trend are marginal and are dominated by a particular form of negative 

spatial association: the LH type, where a region with low per capita GDP is surrounded by regions with high 

per capita GDP (0.68% of the significant LISA). Only two HL regions, or “diamonds in the rough”, are 

detected: Madrid (Spain) for 1991 and 1992. The “doughnuts” or LH clusters are Brabant Wallon for 3 

years, Hainault for 2 years and Namur for 3 years (Belgium), Friesland for 6 years and Drenthe for only one 

year (Netherlands), these regions constitute therefore a little pocket of non-stationnarity for a limited period of 

time11. 

                                                                 
9 We can note that 66.1% of these indicators are significant at the 5% pseudo-significance level (1459 versus a total of 2208) 
and only 28.4% at the 10% Bonferroni pseudo-significance level (628 versus a total of 2208). 
10 Using the Bonferroni 10% pseudo-significance level, the picture is quite different since 11.78% of significant LISA fall in 
quadrant I and 16.67% of significant LISA fall in quadrant III, the latter including the regions with low per capita GDP 
surrounded by other regions with low per capita GDP. 
11 No atypical localization is found when the Bonferroni 10% pseudo-significance level is used. 
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Third, four regional clusters persist in time. The first is a significant LL form of clustering between all the 

Portuguese regions and almost all the Spanish regions. We can note that these “poor” regions entered the EU 

in 1986, that they benefited since 1989 of the regional aid to the so-called Objective 1 regions but that over all 

the period, the per capita GDP of these regions remains lower than the average. The same comment apply for 

the two LL form of clustering between some Italian Objective 1 regions (Puglia, Basilicata, Calabria, Sicilia) 

and between all the Greek regions (the Greek and the Portuguese regions are even significant using the 10% 

Bonferroni pseudo-significance level). The last clustering, of the HH type, relates mainly to German regions 

but also to some Belgian, French, Dutch and north Italian regions. However, most of the French regions that 

were significant in 1980 do not belong to the cluster any more in 1995 (only 4 northern regions of the 16 

regions remain significant). These results show a high persistence of spatial inequality between the European 

regions across time: the regions that were surrounded by rich neighbors still benefit from their environment 

whereas the regions with poor neighbors remain negatively affected.  

 

[Figures 3 and 4 about here] 

 

The spatial outliers identified by the 2 sigma rule are shown in the last set of rows in table 2. In 1980, all 

the Portuguese regions as well as the Spanish region Extremadura indicated clustering of very similar values. 

The situation in 1995 is very different since the Portuguese regions are replaced by the Greek regions (only 

Alentejo remains a spatial outlier).  

3.4 Spatial patterns of growth rates 

To refine this analysis, we apply the ESDA techniques to the growth rates of per capita GDP in order to 

study the geographical patterns in growth processes. 

The computation of Moran’s I statistics on the growth rate of per capita GDP between 1980 and 1995 

of the various regions reveals a positive spatial autocorrelation (0.422 with a p-value of 0.0001). It means that 

the regions with relatively high per capita GDP growth rate (respectively low) are localized close to other 
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regions with relatively high per capita GDP growth rate (respectively low) more often than if this localization 

was purely random.  

The Moran scatterplot for growth rates is displayed in figure 5. Compared to the scatterplots for per 

capita GDP in 1980 and 1995, there is much more instability: only 73.2% of the European regions show 

association of similar values (33.3% in quadrant I (HH) and 39.9% in quadrant III (LL)) while 26.8% of the 

regions are negatively associated (11.6% in quadrant II (LH) and 15.2% in quadrant IV (HL)). All the 

Portuguese regions have growth rates more than two standard deviations above the mean. Let’s recall that 

they were outliers in the opposite quadrant in 1980. We will come back to this inverse relationship between 

the per capita GDP in 1980 and growth rates at the end of this paragraph. Finally, the most extreme 

observations according to the Moran regression diagnostics are shown in the last column of table 2. As for per 

capita GDP in 1980 and 1995, there was no influential region according to the Cook’s distance criterion.  

 

 [Figure 5 about here] 

 

The procedure of evaluation of local spatial autocorrelation applied to the growth rates (table 4, 3rd 

column) shows that the patterns of spatial association remain dominated by clustering of LL or HH types12. 

Galicia and Asturias in Spain are the 2 regions with low growth rates surrounded by regions with high growth 

rates. The regions with high growth rates surrounded by regions with low growth rates are to be found in 

Greece : Anatoliki Makedonia, Ionia Nisia and Kriti. The significant LISA at the 5% level are shown in figure 

6. 

 

[Figure 6 about here] 

 

To study the possible geographical characteristics implied by β -convergence processes, we compared 

the pattern of spatial association of growth rate with the pattern of spatial association of initial per capita GDP 

                                                                 
12 42.7% (15.2%) of the LISA computed are significant at the 5% pseudo-level (resp. 10% Bonferroni pseudo-level). 
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(table 4, first and 3rd columns) in order to look for a possible inverse relationship. Several results can be 

underlined.  

It appears that, in only 43% of the cases, the regions that were in a certain quadrant for per capita GDP 

level in 1980 are in the opposite quadrant for their growth rate. But this global feature masks different 

behaviors. Thus, the regions of Portugal and some Spanish regions had in 1980 a low per capita GDP and 

were surrounded by regions with low per capita GDP (clustering of the LL type) but their growth rate is, as 

for their neighbors, higher than the average (clustering of the HH type). The spatial autocorrelation indicators 

highlight the dynamic character of these regions, whose economic performances within the group of the 

Southern regions of Europe were often underlined. On the contrary, the majority of the French regions, the 

British regions, some regions in Belgium and in the Netherlands, are characterized by a configuration of the 

initial per capita GDP of HH type and a configuration of the growth rates of the LL type. 

Other characteristics between the patterns of spatial association can be highlighted. On the one hand, 

within the group of the Southern regions, certain poor regions of Spain, Italy and Greece do not manage to 

take off, just like their neighbors (configurations of the LL type for the initial per capita GDP and the growth 

rates) or in spite of the dynamism of their neighbors (configuration of the LL type for the initial per capita GDP 

and of LH type for the growth rates). These regions thus show strong signs of delay of development. On the 

other hand, almost all the German regions are very dynamic since they started with high levels, as well as their 

neighbors and still had a HH type form of clustering for their growth rates. 

[Table 4 about here] 

 

4 Conclusion 

The study of the spatial distribution of regional per capita GDP in Europe over 1980-1995 using 

Exploratory Spatial Data Analysis (ESDA) highlights the importance of spatial interactions and geographical 

locations in regional growth and convergence issues. ESDA appears therefore as a powerful tool to finely 

reveal the characteristics of economic development of each region in relation to those of its geographical 
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environment. 

First, ESDA reveals significant positive global spatial autocorrelation, which is persistent over the whole 

period: regions with relatively high (resp. low) per capita GDP are and remain localized close to other regions 

with relatively high (low) per capita GDP and that the spatial distribution of regional per capita GDP is not 

random. From the applied econometrics perspective, this result has a major implication for the suitable 

estimation of β-convergence models: spatial autocorrelation should systematically be tested for in cross 

section specifications and if detected, an appropriate spatial specification (spatial autoregressive model, spatial 

error model or spatial cross regressive model) should be estimated using the proper econometric tools to 

achieve reliable statistical inference. 

Second, the Moran scatterplot and LISA show the persistence of the high-high and low-low clustering 

types for regional per capita GDP, confirming the north-south polarization of European regions. This reveals 

some kind of spatial heterogeneity hidden in the global positive spatial autocorrelation pattern and may indicate 

the co-existence of two distinct spatial regimes. Spatial effects could then perform differently in Northern 

Europe than in Southern Europe. Moreover the convergence process, if it exists, may be different across 

regimes. Once again from the applied econometrics perspective, this result suggest that the potential for 

distinct spatial regimes should also be considered carefully in the estimation of β-convergence models, which 

should be tested for structural instability. All these aspects will be studied in further research. 
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Table 1. Moran’s I statistics for log per capita GDP over 1980-1995 
 

Year Moran’s I Standard deviation Standardized value 
1980 0.774 0.033940 23.024 
1981 0.760 0.033971 22.574 
1982 0.746 0.033956 22.161 
1983 0.779 0.034083 23.060 
1984 0.757 0.034019 22.446 
1985 0.766 0.034077 22.692 
1986 0.785 0.034126 23.213 
1987 0.789 0.034164 23.289 
1988 0.773 0.034196 22.802 
1989 0.750 0.034221 22,113 
1990 0.762 0.034242 22.461 
1991 0.754 0.034311 22.174 
1992 0.770 0.034323 22.651 
1993 0.790 0.034272 23.259 
1994 0.799 0.034267 23.514 
1995 0.802 0.034222 23.653 

 

Note: The expected value for Moran’s I statistic is constant for each year: ( ) 0.007E I = − . All statistics are significant at 

   0.0001p = . 

 
 

Table 2. Outliers : initial and terminal years and growth rates for log per capita GDP 
 

 1980  1995  Growth  
 Region Studentized 

Residual 
Region Studentized 

Residual 
Region Studentized 

Residual 
 Sterea Ellada -3.445158 Ile de France -3.139385 Andalucia 3.497511 
 Bruxelles -2.893242 Hamburg -2.886250 Extremadura 2.822284 

Studentized Hamburg -2.500151 Bruxelles -2.654439 Galicia 2.745314 
residuals Attiki -2.298205 Luxembourg (Lux) -2.612451 Luxembourg (Lux) -2.666020 
exceeding Ile de France -2.225954 Attiki -2.337432 Asturias 2.591420 

2 in absolute Asturias -2.099516 Darmstadt -2.130149 Kriti -2.436728 
value Lüneburg 2.073019 Madrid -2.005542 Ionia Nisia -2.195220 

     Notio Agaio -2.142425 

 Region Leverage Region Leverage Region Leverage 
 Centro 0.072428 Ipeiros 0.052553 Algarve 0.105763 
 Norte 0.065610 Hamburg 0.046399 Centro 0.102492 
 Alentejo 0.062048 Voreio Aigaio 0.040424 Norte 0.089878 
 Algarve 0.058095 Alentejo 0.038027 Sterea Ellada 0.065942 

leverage  Voreio Aigaio 0.038353 Darmstadt 0.037616 Lisboa 0.064531 
exceeding Hamburg 0.036314 Centro 0.034994 Luxembourg (Lux) 0.055558 

4/N Extremadura 0.035489 Norte 0.032597 Alentejo 0.054656 
 Ipeiros 0.035076 Dyptiki Ellada 0.031850 Picardie 0.030390 
 Bruxelles 0.032278 Oberbayern 0.031539   
 Lisboa 0.031164 Luxembourg (Lux) 0.030974   
 Ionia Nisia 0.029664 Peloponnissos 0.030740  
 Anatoliki Makedonia 0.029641 Bremen 0.029290  
 Region LISA Region LISA Region LISA 
 Extremadura 3.668896 Anatoliki Makedonia 2.995502 Norte 3.708258 
 Norte 4.323912 Kentriki Makedonia 2.587855 Centro 5.333233 
 Centro 5.100167 Dyptiki Makedonia 2.769021 Lisboa 4.516306 

LISA  Lisboa 3.432059 Thessalia 2.891856 Alentejo 4.173558 
outliers Alentejo 4.938435 Ipeiros 3.841003 Algarve 5.762157 
(2-sigma Algarve 4.744208 Ionia Nisia 2.69785  

rule)   Dyptiki Ellada 3.108809  
   Sterea Ellada 2.663872  
   Peloponnisos 3.045441  
   Voreio Aigaio 3.275564  
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   Alentejo 2.801488  
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Fig. 1. Moran scatterplot for log per capita GDP 1980 
 
 

Log per capita GDP (standardized)

S
pa

tia
l l

ag
 o

f 
lo

g 
pe

r 
ca

pi
ta

 G
D

P
 (

st
an

da
rd

iz
ed

)

BE1

BE21
BE22

BE23BE24 BE25BE31BE32

BE33
BE34BE35

DE11DE12

DE13

DE14

DE21DE22

DE23
DE24 DE25

DE26
DE27

DE5
DE6

DE71

DE72
DE73

DE91

DE92
DE93

DE94

DEA1
DEA2

DEA3

DEA4
DEA5DEB1

DEB2

DEB3

DEC

DEF
DK

ES11 ES12

ES13

ES21
ES22

ES23

ES24

ES3
ES41

ES42

ES43

ES51

ES52

ES53

ES61

ES62

FR1

FR21
FR22

FR23
FR24

FR25

FR26
FR3

FR41

FR42

FR43

FR51FR52FR53

FR61

FR62

FR63

FR71FR72
FR81

FR82

GR11 GR12

GR13

GR14

GR21
GR22

GR23
GR24

GR25
GR3

GR41

GR42
GR43

IT11

IT12

IT13

IT2

IT31

IT32

IT33

IT4
IT51

IT52 IT53

IT6
IT71

IT72

IT8

IT91

IT92

IT93

ITA

ITB

LU

NL12
NL13

NL2 NL31
NL32NL33

NL34NL41NL42

PT11
PT12

PT13

PT14 PT15

UK1
UK2

UK3

UK4

UK5

UK6

UK7UK8
UK9

UKA
UKB

-2,5

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

-3,5 -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5

 
 

Fig. 2. Moran scatterplot log per capita GDP 1995 



 22 

Table 3. Local Indicators of Spatial Association (LISA): Log per capita GDP (1980-1995) 
 

Code Region Signif HH LH LL HL Years 5% Years 10% Bonf. 
 BELGIUM         
Be1 Bruxelles 1 (0) 1    80  
Be21 Anvers 6 (0) 6    80-81;87; 93-95  
Be22 Limburg (B) 12 (0) 12    80-83;85-88;92-95  
Be23 Oost Vlaanderen 4 (0) 4    80-81;94-95  
Be24 Vlaams Brabant 4 (0) 4    80-81;94-95  
Be25 West Vlaanderen 5 (0) 5    80-81;93-95  
Be31 Brabant Wallon 5 (0) 2 3   80;95 / 81;93-94  
Be32 Hainaut 4 (0) 2 2   80-81 / 94-95  
Be33 Liège 4 (0) 4    80;93-95  
Be34 Luxembourg (B) 9 (0) 9    80-81;86-88;92-95  
Be35 Namur 5 (0) 2 3   80-81 / 93-95  
 GERMANY        
De11 Stuttgart 16 (15) 16 (15)    80-95 80;82-95 
De12 Karlsruhe 16 (16) 16 (16)    80-95 80-95 
De13 Freiburg 16 (16) 16 (16)    80-95 80-95 
De14 Tübingen 16 (16) 16 (16)    80-95 80-95 
De21 Oberbayern 16 (9) 16 (9)    80-95 83-84;87-88;91-95 
De22 Niederbayern 16 (9) 16 (9)    80-95 87-95 
De23 Oberpfalz 16 (16) 16 (16)    80-95 80-95 
De24 Oberfranken 16 (13) 16 (13)    80-95 83-95 
De25 Mittelfranken 16 (15) 16 (15)    80-95 80;82-95 
De26 Unterfranken 16 (13) 16 (13)    80-95 83-95 
De27 Schwaben 16 (13) 16 (13)    80-95 83-95 
De5 Bremen 16 (0) 16    80-95  
De6 Hamburg 16 (3) 16 (3)    80-95 93-95 
De71 Darmstadt 16 (2) 16 (2)    80-95 93;95 
De72 Giessen 16 (11) 16 (11)    80-95 80;83-84;86-88;91-95 
De73 Kassel 16 (4) 16 (4)    80-95 92-95 
De91 Braunschweig 16 (11) 16 (11)    80-95 80;82-84;87-88;91-95 
De92 Hannover 16 (7) 16 (7)    80-95 80;82-84;93-95 
De93 Lüneburg 16 (14) 16 (14)    80-95 80-88;91-95 
De94 Weser-Ems 16 (5) 16 (5)    80-95 80-83;95 
Dea1 Düsseldorf 14 (0) 14    80-90;93-95  
Dea2 Köln 14 (0) 14    80-81;83;85-95  
Dea3 Münster 16 (0) 16    80-95  
Dea4 Detmold 16 (2) 16 (2)    80-95 93;95 
Dea5 Arnsberg 16 (3) 16 (3)    80-95 93-95 
Deb1 Koblenz 16 (3) 16 (3)    80-95 93-95 
Deb2 Trier 12 (0) 12    80-81;85-90;92-95  
Deb3 Rheinhessen-Pfalz 16 (16) 16 (16)    80-95 80-95 
Dec Saarland 16 (0) 16    80-95  
Def Schleswig-Holstein 16 (10) 16 (10)    80-95 81-87;93-95 
Dk DENMARK 16 (7) 16 (7)    80-95 80;82-84;93-95 
 SPAIN        
Es11 Galicia 16 (15)   16 (15)  80-95 80-91;93-95 
Es12 Asturias 16 (10)   16 (10)  80-95 80-88;94 
Es13 Cantabria 16 (0)   16  80-95  
Es21 Pais Vasco 9 (0)   9  81-87 ;94-95  
Es22 Navarra 7 (0)   7  81-87  
Es23 La Rioja 11(0)   11  80-88;94-95  
Es24 Aragon 4 (0)   4  82-85  
Es3 Madrid 16 (7)   14 (7) 2 80-90;93-95/91-92 81-87 
Es41 Castilla-Leon 16 (5)   16 (5)  80-95 81-85 
Es42 Castilla-la Mancha 16 (2)   16 (2)  80-95 82-83 
Es43 Extremadura 16 (16)   16 (16)  80-95 80-95 
Es51 Cataluna 0 (0)       
Es52 Valenciana 13 (0)   13  80-89;93-95  
Es53 Islas Baleares 9 (0)   9  80-86;94-95  
Es61 Andalucia 16 (16)   16 (16)  80-95 80-95 
Es62 Murcia 16 (5)   16 (5)  80-95 81-85 
 FRANCE        
Fr1 Ile de France 2 (0) 2    80-81  
Fr21 Champagne-Ardenne 9 (0) 9    80-82 ;85-87 ;93-95  
Fr22 Picardie 10 (0) 10    80-83;85-87;93-95  
Fr23 Haute-Normandie 10 (0) 10    80-89  
Fr24 Centre 8 (0) 8    80-87  
Fr25 Basse-Normandie 10 (0) 10    80-89  
Fr26 Bourgogne 11 (1) 11(1)    80-90 81 
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Fr3 Nord-Pas-De-Calais 3 (0) 3    80-81;95  
Fr41 Lorraine 16 (0) 16    80-95  
Fr42 Alsace 16 (2) 16 (2)    80-95 80;95 
Fr43 Franche-Comté 16 (0) 16    80-95  
Fr51 Pays de la Loire 8 (0) 8    80-87  
Fr52 Bretagne 10 (0) 10    80-89  
Fr53 Poitou-Charentes 8 (0) 8    80-87  
Fr61 Aquitaine 0 (0)       
Fr62 Midi-Pyrénées 0 (0)       

 
 

Code Region  HH LH LL HL Years 5% Years 10% Bonf. 
Fr63 Limousin 9 (0) 9    80-88  
Fr71 Rhône-Alpes 2 (0) 2    86-87  
Fr72 Auvergne 4 (0) 4    80-82 ;86  
Fr81 Languedoc-Roussillon 0 (0)       
Fr82 PACA 9 (0) 9    83-91  
 GREECE        
Gr11 Anatoliki Makedonia 16 (16)   16 (16)  80-95 80-95 
Gr12 Kentriki Makedonia 16 (16)   16 (16)  80-95 80-95 
Gr13 Dytiki Makedonia 16 (16)   16 (16)  80-95 80-95 
Gr14 Thessalia 16 (16)   16 (16)  80-95 80-95 
Gr21 Ipeiros 16 (16)   16 (16)  80-95 80-95 
Gr22 Ionia Nisia 16 (16)   16 (16)  80-95 80-95 
Gr23 Dytiki Ellada 16 (16)   16 (16)  80-95 80-95 
Gr24 Sterea Ellada 16 (16)   16 (16)  80-95 80-95 
Gr25 Peloponnisos 16 (16)   16 (16)  80-95 80-95 
Gr3 Attiki 16 (16)   16 (16)  80-95 80-95 
Gr41 Voreio Aigaio 16 (16)   16 (16)  80-95 80-95 
Gr42 Notio Aigaio 16 (16)   16 (16)  80-95 80-95 
Gr43 Kriti 16 (16)   16 (16)  80-95 80-95 
 ITALY        
It11 Piemonte 14 (0) 14    81-94  
It12 Valle d'Aosta 16 (0) 16    80-95  
It13 Liguria 10 (0) 10    83-92  
It2 Lombardia 12 (3) 12 (3)    83-94 89-91 
It31 Trentino – Alto Adige 15 (2) 15 (2)    81-95 90-91 
It32 Veneto 12 (1) 12 (1)    83-94 91 
It33 Friuli – Venezia Giulia 14 (1) 14 (1)    82-95 91 
It4 Emilia – Romagna 9 (0) 9    84-92  
It51 Toscana 7 (0) 7    86-92  
It52 Umbria 0 (0)       
It53 Marche 0 (0)       
It6 Lazio 0 (0)       
It71 Abruzzo 0 (0)       
It72 Molise 1 (0)   1  95  
It8 Campania 4 (0)   4  80-82;95  
It91 Puglia 16 (2)   16 (2)  80-95 94-95 
It92 Basilacata 6 (0)   6  80-82;93-95  
It93 Calabria 16 (2)   16 (2)  80-95 94-95 
Ita Sicilia 8 (0)   8  80-83;85;93-95  
Itb Sardegna 0 (0)       
Lu LUXEMBOURG 7 (0) 7    80-81;86-87;93-95  
 NEDERLAND        
Nl12 Friesland 16 (0) 10 6   80-87;93-95 / 85;88-92  
Nl13 Drenthe 16 (1) 15 (1) 1   80-91;93-95 / 92 80 
Nl2 Oost Nederland 12 (0) 12    80-88;93-95  
Nl31 Utrecht 14 (0) 14    80-90;93-95  
Nl32 Noord-Holland 12 (0) 12    80-88;93-95  
Nl33 Zuid-Holland 5 (0) 5    80-81;93-95  
Nl34 Zeeland 5 (0) 5    80-81;93-95  
Nl41 Noord-Brabant  12 (0) 12    80-83;86-90;93-95  
Nl42 Limburg (NL) 6 (0) 6    80-81;87 ;93-95  
 PORTUGAL        
Pt11 Norte 16 (16)   16 (16)  80-95 80-95 
Pt12 Centro 16 (16)   16 (16)  80-95 80-95 
Pt13 Lisboa e vale do Tejo 16 (16)   16 (16)  80-95 80-95 
Pt14 Alentejo 16 (16)   16 (16)  80-95 80-95 
Pt15 Algarve 16 (16)   16 (16)  80-95 80-95 
 UNITED-KINGDOM        
Uk1 North 0 (0)       
Uk2 Yorkshire and Humberside 0 (0)       
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Uk3 East Midlands 0 (0)       
Uk4 East Anglia 1 (0) 1    81  
Uk5 South East 0 (0)       
Uk6 South West 0 (0)       
Uk7 West Midlands 0 (0)       
Uk8 North West 0 (0)       
Uk9 Wales 0 (0)       
Uka Scotland 0 (0)       
Ukb Northern Ireland 0 (0)       
 Signif. tot. 5% 1459 908 15 534 2   
 % versus total of 2208 66.08 41.12 0.68 24.18 0.09   
 % versus signif. tot. 5%  62.23 1.03 36.6 0.14   
 Signif. tot. 10% Bonf. (628) (260) (0) (368) (0)   
 % versus total of 2208 28.44 11.78 0 16.67 0   
 % versus signif. tot. 

10% 
 41.4 0 58.6 0   

Note: signif: number of years local statistics is significant at 5% pseudo-significance level (in brackets at 10% Bonferroni 
pseudo-significance level) based on 10000 permutations; HH, LH, LL and HL: number of years local statistics is 
respectively in quadrant I, II, III and IV of Moran’s scatterplot. 
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TABLE 4. Spatial Association Patterns: initial and terminal years and growth rates for log per capita GDP (1980-1995) 
 

Code Region 1980 1995 growth    Code Region 1980 1995 growth 
 BELGIUM          Fr51 Pays de la Loire HH HH LL 

Be1 Bruxelles HH HH LL    Fr52 Bretagne HH HH LL 
Be21 Anvers HH HH LL    Fr53 Poitou-Charentes HH HH LL 
Be22 Limburg (B) HH HH HL    Fr61 Aquitaine HL HL LL 
Be23 Oost Vlaanderen HH HH LL    Fr62 Midi-Pyrénées HH HL LL 
Be24 Vlaams Brabant HH HH HL    Fr63 Limousin HH HH LL 
Be25 West Vlaanderen HH HH HL    Fr71 Rhône-Alpes HH HH LL 
Be31 Brabant wallon HH HH LL    Fr72 Auvergne HH HH LL* 
Be32 Hainaut HH LH LL    Fr81 Languedoc-Roussillon HH LH LL 
Be33 Liège HH HH LH    Fr82 PACA HH HH LL 
Be34 Luxembourg (B) HH HH HH     GREECE    
Be35 Namur HH LH LH    Gr11 Anatoliki Makedonia LL* LL* HL 

 GERMANY         Gr12 Kentriki Makedonia LL* LL* LL 
De11 Stuttgart HH* HH* HH    Gr13 Dytiki Makedonia LL* LL* LL 
De12 Karlsruhe HH* HH* HH    Gr14 Thessalia LL* LL* LL 
De13 Freiburg HH* HH* HL    Gr21 Ipeiros LL* LL* LL 
De14 Tübingen HH* HH* HH    Gr22 Ionia Nisia LL* LL* HL 
De21 Oberbayern HH HH* HH    Gr23 Dytiki Ellada LL* LL* LL 
De22 Niederbayern HH HH* HH    Gr24 Sterea Ellada LL* LL* LL 
De23 Oberpfalz HH* HH* HH    Gr25 Peloponnisos LL* LL* LL 
De24 Oberfranken HH HH* HH    Gr3 Attiki LL* LL* LL 
De25 Mittelfranken HH* HH* HH    Gr41 Voreio Aigaio LL* LL* HL 
De26 Unterfranken HH HH* HH    Gr42 Notio Aigaio LL* LL* HL 
De27 Schwaben HH HH* HH    Gr43 Kriti LL* LL* HL 
De5 Bremen HH HH HH     ITALY      
De6 Hamburg HH HH* HH    It11 Piemonte HH HH LL 
De71 Darmstadt HH HH* HH    It12 Valle d'Aosta HH HH LL 
De72 Giessen HH* HH* HH    It13 Liguria HH HH HL 
De73 Kassel HH HH* HH    It2 Lombardia HH HH LH 
De91 Braunschweig HH* HH* HH    It31 Trentino – Alto Adige HH HH HH 
De92 Hannover HH* HH* HH    It32 Veneto HH HH HH 
De93 Lüneburg HH* HH* HH    It33 Friuli – Venezia Giulia HH HH HH 
De94 Weser-Ems HH* HH* HL    It4 Emilia – Romagna HH HH LH 
Dea1 Düsseldorf HH HH LL    It51 Toscana HH HH LH 
Dea2 Köln HH HH HH    It52 Umbria LL LL LH 
Dea3 Münster HH HH HL    It53 Marche LL LL LH 
Dea4 Detmold HH HH* HH    It6 Lazio LL HL HL 
Dea5 Arnsberg HH HH* LH    It71 Abruzzo LL LL HL 
Deb1 Koblenz HH HH* HH    It72 Molise LL LL HL 
Deb2 Trier HH HH HH    It8 Campania LL LL LL 
Deb3 Rheinhessen-Pfalz HH* HH* LH    It91 Puglia LL LL* LL 
Dec Saarland HH HH HH    It92 Basilacata LL LL LH 
Def Schleswig-Holstein HH HH* HH    It93 Calabria LL LL* HL 
Dk DENMARK HH* HH* HH    Ita Sicilia LL LL LH 

 SPAIN         Itb Sardegna LL LL HL 
Es11 Galicia LL* LL* LH*    Lu LUXEMBOURG HH HH HL 
Es12 Asturias LL* LL LH     NEDERLAND      
Es13 Cantabria LL LL LH    Nl12 Friesland HH HH LL 
Es21 Pais Vasco LL LL HH    Nl13 Drenthe HH* HH LL 
Es22 Navarra LL LL HH    Nl2 Oost Nederland HH HH LL 
Es23 La Rioja LL LL HH    Nl31 Utrecht HH HH HL 
Es24 Aragon LL LL HH    Nl32 Noord-Holland HH HH LL 
Es3 Madrid LL LL HH    Nl33 Zuid-Holland HH HH LL 
Es41 Castilla-Leon LL LL HH    Nl34 Zeeland HH HH LL 
Es42 Castilla-la Mancha LL LL HH    Nl41 Noord-Brabant  HH HH HL 
Es43 Extremadura LL* LL* HH*    Nl42 Limburg (NL) HH HH LL 
Es51 Cataluna LL LL HL     PORTUGAL      
Es52 Valenciana LL LL HH    Pt11 Norte LL* LL* HH* 
Es53  Islas Baleares LL LL HH    Pt12 Centro LL* LL* HH* 
Es61 Andalucia LL* LL* HH*    Pt13 Lisboa e vale do Tejo LL* LL* HH* 
Es62 Murcia LL LL HH    Pt14 Alentejo LL* LL* HH* 

 FRANCE         Pt15 Algarve LL* LL* HH* 
Fr1 Ile de France HH HH LL     UNITED-KINGDOM      
Fr21 Champagne-Ardenne HH HH LL    Uk1 North HH LL LL* 
Fr22 Picardie HH HH LL    Uk2 Yorkshire and Humberside HH LL LL* 
Fr23 Haute-Normandie HH HH LL    Uk3 East Midlands HH LL LL* 
Fr24 Centre HH HH LL*    Uk4 East Anglia HH LH LL 
Fr25 Basse-Normandie HH HH LL*    Uk5 South East HH HH LL 
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Fr26 Bourgogne HH HH LL*    Uk6 South West HH LL LL* 
Fr3 Nord-Pas-De-Calais HH HH LL    Uk7 West Midlands HH LL LL* 
Fr41 Lorraine HH HH LH    Uk8 North West HH LL LL* 
Fr42 Alsace HH* HH* LH    Uk9 Wales LH LL LL* 
Fr43 Franche-Comté HH HH LL    Uka Scotland HH LL LL* 

       Ukb Northern Ireland LH LL LL* 
 

Note: in bold significant at 5% (* significant at 10% Bonferroni) pseudo-signifiance level based on 10000 
Permutations. 
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Fig. 3. Significant LISA Log per capita GDP 1980 

Fig. 4. Significant LISA Log per capita GDP 1995 
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Per capita growth rate (standardized)
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Fig. 5. Moran scatterplot growth rate of per capita GDP over 1980-1995 
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Fig. 6. Significant LISA growth rate of per capita GDP over 1980-1995 


